Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381035

RESUMO

Mosaic penA alleles formed through horizontal gene transfer (HGT) have been instrumental to the rising incidence of ceftriaxone-resistant gonococcal infections. Although interspecies HGT of regions of the penA gene between Neisseria gonorrhoeae and commensal Neisseria species has been described, knowledge concerning which species are the most common contributors to mosaic penA alleles is limited, with most studies examining only a small number of alleles. Here, we investigated the origins of recombinant penA alleles through in silico analyses that incorporated 1700 penA alleles from 35 513 Neisseria isolates, comprising 15 different Neisseria species. We identified Neisseria subflava and Neisseria cinerea as the most common source of recombinant sequences in N. gonorrhoeae penA. This contrasted with Neisseria meningitidis penA, for which the primary source of recombinant DNA was other meningococci, followed by Neisseria lactamica. Additionally, we described the distribution of polymorphisms implicated in antimicrobial resistance in penA, and found that these are present across the genus. These results provide insight into resistance-related changes in the penA gene across human-associated Neisseria species, illustrating the importance of genomic surveillance of not only the pathogenic Neisseria, but also of the oral niche-associated commensals from which these pathogens are sourcing key genetic variation.


Assuntos
Gonorreia , Neisseria meningitidis , Humanos , Mosaicismo , Neisseria/genética , Neisseria gonorrhoeae/genética
2.
Sci Rep ; 14(1): 1179, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216602

RESUMO

One of the most promising new treatments for gonorrhoea currently in phase 3 clinical trials is zoliflodacin. Studies have found very little resistance to zoliflodacin in currently circulating N. gonorrhoeae strains, and in-vitro experiments demonstrated that it is difficult to induce resistance. However, zoliflodacin resistance may emerge in commensal Neisseria spp., which could then be transferred to N. gonorrhoeae via transformation. In this study, we investigated this commensal-resistance-pathway hypothesis for zoliflodacin. To induce zoliflodacin resistance, ten wild-type susceptible isolates belonging to 5 Neisseria species were serially passaged for up to 48 h on gonococcal agar plates containing increasing zoliflodacin concentrations. Within 7 to 10 days, all strains except N. lactamica, exhibited MICs of ≥ 4 µg/mL, resulting in MIC increase ranging from 8- to 64-fold. The last passaged strains and their baseline were sequenced. We detected mutations previously reported to cause zoliflodacin resistance in GyrB (D429N and S467N), novel mutations in the quinolone resistance determining region (QRDR) (M464R and T472P) and mutations outside the QRDR at amino acid positions 28 and 29 associated with low level resistance (MIC 2 µg/mL). Genomic DNA from the laboratory evolved zoliflodacin-resistant strains was transformed into the respective baseline wild-type strain, resulting in MICs of ≥ 8 µg/mL in most cases. WGS of transformants with decreased zoliflodacin susceptibility revealed presence of the same zoliflodacin resistance determinants as observed in the donor strains. Two inter-species transformation experiments were conducted to investigate whether zoliflodacin resistance determinants of commensal Neisseria spp. could be acquired by N. gonorrhoeae. N. gonorrhoeae strain WHO P was exposed to (i) pooled genomic DNA from the two resistant N. mucosa strains and (ii) a gyrB amplicon of the resistant N. subflava strain 45/1_8. Transformants of both experiments exhibited an MIC of 2 µg/mL and whole genome analysis revealed uptake of the mutations detected in the donor strains. This is the first in-vitro study to report that zoliflodacin resistance can be induced in commensal Neisseria spp. and subsequently transformed into N. gonorrhoeae.


Assuntos
Barbitúricos , Gonorreia , Isoxazóis , Morfolinas , Oxazolidinonas , Quinolonas , Compostos de Espiro , Humanos , Neisseria/genética , Neisseria gonorrhoeae , Quinolonas/farmacologia , Testes de Sensibilidade Microbiana , DNA , Antibacterianos/farmacologia
3.
mBio ; 15(1): e0279223, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38084997

RESUMO

IMPORTANCE: We describe the importance of Type IV pilus retraction to colonization and persistence by a mouse commensal Neisseria, N. musculi, in its native host. Our findings have implications for the role of Tfp retraction in mediating interactions of human-adapted pathogenic and commensal Neisseria with their human host due to the relatedness of these species.


Assuntos
Proteínas de Fímbrias , Fímbrias Bacterianas , Camundongos , Animais , Humanos , Neisseria/genética , Simbiose , Neisseria gonorrhoeae , Proteínas de Bactérias
4.
Nat Commun ; 14(1): 7706, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001084

RESUMO

Core genome multilocus sequence typing (cgMLST) is commonly used to classify bacterial strains into different types, for taxonomical and epidemiological applications. However, cgMLST schemes require central databases for the nomenclature of new alleles and sequence types, which must be synchronized worldwide and involve increasingly intensive calculation and storage demands. Here, we describe a distributed cgMLST (dcgMLST) scheme that does not require a central database of allelic sequences and apply it to study evolutionary patterns of epidemic and endemic strains of the genus Neisseria. We classify 69,994 worldwide Neisseria strains into multi-level clusters that assign species, lineages, and local disease outbreaks. We divide Neisseria meningitidis into 168 endemic lineages and three epidemic lineages responsible for at least 9 epidemics in the past century. According to our analyses, the epidemic and endemic lineages experienced very different population dynamics in the past 100 years. Epidemic lineages repetitively emerged from endemic lineages, disseminated worldwide, and apparently disappeared rapidly afterward. We propose a stepwise model for the evolutionary trajectory of epidemic lineages in Neisseria, and expect that the development of similar dcgMLST schemes will facilitate epidemiological studies of other bacterial pathogens.


Assuntos
Neisseria meningitidis , Neisseria meningitidis/genética , Neisseria/genética , Genoma Bacteriano/genética , Genótipo , Tipagem de Sequências Multilocus , Análise por Conglomerados
5.
mSphere ; 8(6): e0044123, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37850911

RESUMO

IMPORTANCE: Horizontal gene transfer (HGT) is a major influence in driving the spread of antimicrobial resistance (AMR) in many bacteria. A conjugative plasmid which is widespread in Neisseria gonorrhoeae, pConj, prevented the use of tetracycline/doxycycline for treating gonococcal infection. Here, we show that pConj evolved in the related pathogen, Neisseria meningitidis, and has been acquired by the gonococcus from the meningococcus on multiple occasions. Following its initial acquisition, pConj spread to different gonococcal lineages; changes in the plasmid's conjugation machinery associated with another transfer event limit spread in the gonococcal populations. Our findings have important implications for the use of doxycycline to prevent bacterial sexually transmitted disease which is likely to exacerbate the spread of AMR through HGT in pathogenic bacteria.


Assuntos
Gonorreia , Neisseria meningitidis , Humanos , Neisseria/genética , Doxiciclina , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Gonorreia/microbiologia , Neisseria gonorrhoeae/genética , Neisseria meningitidis/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-37610801

RESUMO

Four Gram-stain-negative, oxidase-positive, non-motile, cocci-shaped bacteria strains (ZJ106T, ZJ104, ZJ785T and ZJ930) were isolated from marmot respiratory tracts. Phylogenetic analyses based on 16S rRNA genes, 53 ribosomal protein sequences and 441 core genes supported that all four strains belonged to the genus Neisseria with close relatives Neisseria weixii 10022T and Neisseria iguanae ATCC 51483T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were below the species-level thresholds (95-96 % for ANI, and 70 % for dDDH). The major fatty acids of all four strains were C16 : 1 ω7c /C16 : 1 ω6c, C16 : 0 and C18 : 1 ω9c. Major polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. MK-8 was the major menaquinone. Based on Virulence Factor Database analysis, the four strains were found to contain NspA and PorB H-factor binding proteins that promote evasion of host immunity. Strains ZJ106T and ZJ104 contained structures similar to the capsule synthesis manipulator of Neisseria meningitidis. Based on phenotypic and phylogenetic evidence, we propose that strains ZJ106T and ZJ785T represent two novel species of the genus Neisseria, respectively, with the names Neisseria lisongii sp. nov. and Neisseria yangbaofengii sp. nov. The type strains are ZJ106T (=GDMCC 1.3111T=JCM 35323T) and ZJ785T (=GDMCC 1.1998T=KCTC 82336T).


Assuntos
Ácidos Graxos , Marmota , Animais , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Neisseria/genética , Sistema Respiratório , Nucleotídeos
7.
Curr Microbiol ; 80(8): 253, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37354372

RESUMO

A novel Neisseria strain, designated CSL10203-ORH2T, was isolated from the oropharynx of a wild California sea lion (Zalophus californianus) that was admitted to The Marine Mammal Center in California, USA. The strain was originally cultured from an oropharyngeal swab on BD Phenylethyl Alcohol (PEA) agar with 5% sheep blood under aerobic conditions. Phylogenetic analyses based on 16S rRNA, rplF, and rpoB gene sequences and the core genome sequences indicated that the strain was most closely related to only N. zalophi CSL 7565T. The average nucleotide identity and digital DNA-DNA hybridization values between strain CSL10203-ORH2T and the closely related species N. zalophi CSL 7565T were 89.84 and 39.70%, respectively, which were significantly lower than the accepted species-defined thresholds for describing novel prokaryotic species at the genomic level. Both type strains were phenotypically similar but can be easily and unambiguously distinguished between each other by the analysis of their housekeeping genes, e.g., rpoB, gyrB, or argF. The major fatty acids in both type strains were C12:0, C16:0, C16:1-c9, and C18:1-c11. Based on the genomic, phenotypic, and phylogenetic properties, the novel strain represents a novel species of the genus Neisseria, for which the name Neisseria montereyensis sp. nov. with the type strain CSL10203-ORH2T (= DSM 114706T = CCUG 76428T = NCTC 14721T) is proposed. The genome G + C content is 45.84% and the complete draft genome size is 2,310,535 bp.


Assuntos
Leões-Marinhos , Animais , Ovinos/genética , Leões-Marinhos/genética , Filogenia , Técnicas de Tipagem Bacteriana , Neisseria/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ácidos Graxos , Genômica , Orofaringe , DNA , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Fosfolipídeos
8.
J Mol Biol ; 435(7): 167991, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736884

RESUMO

Anti-CRISPR proteins inhibit CRISPR-Cas immune systems through diverse mechanisms. Previously, the anti-CRISPR protein AcrIIC5Smu was shown to potently inhibit a type II-C Cas9 from Neisseria meningitidis (Nme1Cas9). In this work, we explore the mechanism of activity of the AcrIIC5 homologue from Neisseria chenwenguii (AcrIIC5Nch) and show that it prevents Cas9 binding to target DNA. We show that AcrIIC5Nch targets the PAM-interacting domain (PID) of Nme1Cas9 for inhibition, agreeing with previous findings for AcrIIC5Smu, and newly establish that strong binding of the anti-CRISPR requires guide RNA be pre-loaded on Cas9. We determined the crystal structure of AcrIIC5Nch using X-ray crystallography and identified amino acid residues that are critical for its function. Using a protein docking algorithm we show that AcrIIC5Nch likely occupies the Cas9 DNA binding pocket, thereby inhibiting target DNA binding through a mechanism similar to that previously described for AcrIIA2 and AcrIIA4.


Assuntos
Proteínas de Bactérias , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Neisseria , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA/metabolismo , Ligação Proteica , Neisseria/genética , Neisseria/virologia
9.
Emerg Infect Dis ; 29(2): 341-350, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692352

RESUMO

Clonal complex 4821 (CC4821) Neisseria meningitidis, usually resistant to quinolones but susceptible to penicillin and third-generation cephalosporins, is increasing worldwide. To characterize the penicillin-nonsusceptible (PenNS) meningococci, we analyzed 491 meningococci and 724 commensal Neisseria isolates in Shanghai, China, during 1965-2020. The PenNS proportion increased from 0.3% in 1965-1985 to 7.0% in 2005-2014 and to 33.3% in 2015-2020. Of the 26 PenNS meningococci, 11 (42.3%) belonged to the CC4821 cluster; all possessed mutations in penicillin-binding protein 2, mostly from commensal Neisseria. Genetic analyses and transformation identified potential donors of 6 penA alleles. Three PenNS meningococci were resistant to cefotaxime, 2 within the CC4821 cluster. With 96% of the PenNS meningococci beyond the coverage of scheduled vaccination and the cefotaxime-resistant isolates all from toddlers, quinolone-resistant CC4821 has acquired penicillin and cefotaxime resistance closely related to the internationally disseminated ceftriaxone-resistant gonococcal FC428 clone, posing a greater threat especially to young children.


Assuntos
Neisseria meningitidis , Quinolonas , Neisseria meningitidis/genética , Penicilinas , Quinolonas/farmacologia , Cefotaxima/farmacologia , China/epidemiologia , Neisseria/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Resistência às Penicilinas/genética
10.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362240

RESUMO

Genome sequencing facilitates the study of bacterial taxonomy and allows the re-evaluation of the taxonomic relationships between species. Here, we aimed to analyze the draft genomes of four commensal Neisseria clinical isolates from the semen of infertile Lebanese men. To determine the phylogenetic relationships among these strains and other Neisseria spp. and to confirm their identity at the genomic level, we compared the genomes of these four isolates with the complete genome sequences of Neisseria gonorrhoeae and Neisseria meningitidis and the draft genomes of Neisseria flavescens, Neisseria perflava, Neisseria mucosa, and Neisseria macacae that are available in the NCBI Genbank database. Our findings revealed that the WGS analysis accurately identified and corroborated the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) species identities of the Neisseria isolates. The combination of three well-established genome-based taxonomic tools (in silico DNA-DNA Hybridization, Ortho Average Nucleotide identity, and pangenomic studies) proved to be relatively the best identification approach. Notably, we also discovered that some Neisseria strains that are deposited in databases contain many taxonomical errors. The latter is very important and must be addressed to prevent misdiagnosis and missing emerging etiologies. We also highlight the need for robust cut-offs to delineate the species using genomic tools.


Assuntos
Neisseria meningitidis , Neisseria , Masculino , Humanos , Filogenia , Neisseria/genética , Neisseria gonorrhoeae/genética , Neisseria meningitidis/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , DNA , Genoma Bacteriano
11.
mBio ; 13(5): e0199122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154280

RESUMO

Antimicrobial resistance (AMR) is widespread within Neisseria gonorrhoeae populations. Recent work has highlighted the importance of commensal Neisseria (cN) as a source of AMR for their pathogenic relatives through horizontal gene transfer (HGT) of AMR alleles, such as mosaic penicillin binding protein 2 (penA), multiple transferable efflux pump (mtr), and DNA gyrase subunit A (gyrA) which impact beta-lactam, azithromycin, and ciprofloxacin susceptibility, respectively. However, nonpathogenic commensal species are rarely characterized. Here, we propose that surveillance of the universally carried commensal Neisseria may play the role of the "canary in the coal mine," and reveal circulating known and novel antimicrobial resistance determinants transferable to pathogenic Neisseria. We summarize the current understanding of commensal Neisseria as an AMR reservoir, and call to increase research on commensal Neisseria species, through expanding established gonococcal surveillance programs to include the collection, isolation, antimicrobial resistance phenotyping, and whole-genome sequencing (WGS) of commensal isolates. This will help combat AMR in the pathogenic Neisseria by: (i) determining the contemporary AMR profile of commensal Neisseria, (ii) correlating AMR phenotypes with known and novel genetic determinants, (iii) qualifying and quantifying horizontal gene transfer (HGT) for AMR determinants, and (iv) expanding commensal Neisseria genomic databases, perhaps leading to the identification of new drug and vaccine targets. The proposed modification to established Neisseria collection protocols could transform our ability to address AMR N. gonorrhoeae, while requiring minor modifications to current surveillance practices. IMPORTANCE Contemporary increases in the prevalence of antimicrobial resistance (AMR) in Neisseria gonorrhoeae populations is a direct threat to global public health and the effective treatment of gonorrhea. Substantial effort and financial support are being spent on identifying resistance mechanisms circulating within the gonococcal population. However, these surveys often overlook a known source of resistance for gonococci-the commensal Neisseria. Commensal Neisseria and pathogenic Neisseria frequently share DNA through horizontal gene transfer, which has played a large role in rendering antibiotic therapies ineffective in pathogenic Neisseria populations. Here, we propose the expansion of established gonococcal surveillance programs to integrate a collection, AMR profiling, and genomic sequencing pipeline for commensal species. This proposed expansion will enhance the field's ability to identify resistance in and from nonpathogenic reservoirs and anticipate AMR trends in pathogenic Neisseria.


Assuntos
Anti-Infecciosos , Gonorreia , Humanos , Azitromicina/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Ligação às Penicilinas/metabolismo , Neisseria/genética , DNA Girase , Neisseria gonorrhoeae , Gonorreia/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ciprofloxacina/farmacologia , Anti-Infecciosos/metabolismo , beta-Lactamas/farmacologia , Testes de Sensibilidade Microbiana
12.
Cell Host Microbe ; 30(9): 1311-1327.e8, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36108613

RESUMO

Neisseria species are frequently identified in the bronchiectasis microbiome, but they are regarded as respiratory commensals. Using a combination of human cohorts, next-generation sequencing, systems biology, and animal models, we show that bronchiectasis bacteriomes defined by the presence of Neisseria spp. associate with poor clinical outcomes, including exacerbations. Neisseria subflava cultivated from bronchiectasis patients promotes the loss of epithelial integrity and inflammation in primary epithelial cells. In vivo animal models of Neisseria subflava infection and metabolipidome analysis highlight immunoinflammatory functional gene clusters and provide evidence for pulmonary inflammation. The murine metabolipidomic data were validated with human Neisseria-dominant bronchiectasis samples and compared with disease in which Pseudomonas-, an established bronchiectasis pathogen, is dominant. Metagenomic surveillance of Neisseria across various respiratory disorders reveals broader importance, and the assessment of the home environment in bronchiectasis implies potential environmental sources of exposure. Thus, we identify Neisseria species as pathobionts in bronchiectasis, allowing for improved risk stratification in this high-risk group.


Assuntos
Bronquiectasia , Microbiota , Animais , Bronquiectasia/epidemiologia , Humanos , Metagenoma , Camundongos , Neisseria/genética
13.
Arch Microbiol ; 204(9): 591, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053331

RESUMO

Recent research has claimed virulence factors or antimicrobial resistance in commensal or non-pathogenic Neisseria spp. This study aimed to isolate and analyze commensal microorganisms related to the genus Neisseria from the oral cavity of a patient with head and neck cancer. We successfully isolated strain MA1-1 and identified its functional gene contents. Although strain MA1-1 was related to Neisseria flava based on 16S rRNA gene sequence similarity, genomic relatedness analysis revealed that strain MA1-1 was closely related to Neisseria mucosa, reported as a commensal Neisseria species. The strain MA1-1 genome harbored genes for microaerobic respiration and the complete core metabolic pathway with few transporters for nutrients. A number of genes have been associated with virulence factors and resistance to various antibiotics. In addition, the comparative genomic analysis showed that most genes identified in the strain MA1-1 were shared with other Neisseria spp. including two well-known pathogens, Neisseria gonorrhoeae and Neisseria meningitidis. This indicates that the gene content of intra-members of the genus Neisseria has been evolutionarily conserved and is stable, with no gene recombination with other microbes in the host. Finally, this study provides more fundamental interpretations for the complete gene sequence of commensal Neisseria spp. and will contribute to advancing public health knowledge.


Assuntos
Neoplasias de Cabeça e Pescoço , Neisseria meningitidis , Resistência Microbiana a Medicamentos , Genômica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neisseria/genética , Neisseria meningitidis/genética , RNA Ribossômico 16S/genética , Fatores de Virulência/genética
14.
Front Cell Infect Microbiol ; 12: 913292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811666

RESUMO

Neisseria meningitidis and Neisseria gonorrhoeae are two obligate human pathogens that have evolved to be uniquely adapted to their host. The meningococcus is frequently carried asymptomatically in the nasopharynx, while gonococcal infection of the urogenital tract usually elicits a marked local inflammatory response. Other members of the Neisseria genus are abundant in the upper airway where they could engage in co-operative or competitive interactions with both these pathogens. Here, we briefly outline the potential sites of contact between Neisseria spp. in the body, with emphasis on the upper airway, and describe the growing yet circumstantial evidence for antagonism from carriage studies and human volunteer challenge models with Neisseria lactamica. Recent laboratory studies have characterized antagonistic mechanisms that enable competition between Neisseria species. Several of these mechanisms, including Multiple Adhesin family (Mafs), Two Partner Secretion Systems, and Type VI secretion system, involve direct contact between bacteria; the genetic organisation of these systems, and the domain structure of their effector molecules have striking similarities. Additionally, DNA from one species of Neisseria can be toxic to another species, following uptake. More research is needed to define the full repertoire of antagonistic mechanisms in Neisseria spp., their distribution in strains, their range of activity, and contribution to survival in vivo. Understanding the targets of effectors could reveal how antagonistic relationships between close relatives shape subsequent interactions between pathogens and their hosts.


Assuntos
Neisseria meningitidis , Neisseria , Conflito de Interesses , Humanos , Nasofaringe/microbiologia , Neisseria/genética , Neisseria gonorrhoeae/genética , Neisseria meningitidis/genética
15.
World J Microbiol Biotechnol ; 38(9): 149, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773545

RESUMO

Neisseria, a genus from the beta-proteobacteria class, is of potential clinical importance. This genus contains both pathogenic and commensal strains. Gonorrhea and meningitis are two major diseases caused by pathogens belonging to this genus. With the increased use of antimicrobial agents against these pathogens they have evolved the antimicrobial resistance capacity making these diseases nearly untreatable. The set of anti-bacterial resistance genes (resistome) and genes associated with signal processing (secretomes) are crucial for the host-microbial interaction. With the virtue of whole-genome sequences and computational biology, it is now possible to study the genomic and proteomic riddles of Neisseria along with their comprehensive evolutionary and metabolic profiling. We have studied relative synonymous codon usage, amino acid usage, reverse ecology, comparative genomics, evolutionary analysis and pathogen-host (Neisseria-human) interaction through bioinformatics analysis. Our analysis revealed the co-evolution of Neisseria genomes with the human host. Moreover, the co-occurrence of Neisseria and humans has been supported through reverse ecology analysis. A differential pattern of the evolutionary rate of resistomes and secretomes was evident among the pathogenic and commensal strains. Comparative genomics supported the presence of virulent genes in both pathogenic and commensal strains of the select genus. Our analysis also indicated a transition from commensal to pathogenic Neisseria strains through the long run of evolution.


Assuntos
Neisseria , Proteômica , Biologia Computacional , Genoma Bacteriano/genética , Genômica , Humanos , Neisseria/genética
16.
Can J Microbiol ; 68(8): 551-560, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512370

RESUMO

The development of simple and highly efficient strategies for genetic modifications is essential for postgenetic studies aimed at characterizing gene functions for various applications. We sought to develop a reliable system for Neisseria species that allows for both unmarked and accumulation of multiple genetic modifications in a single strain. In this work, we developed and validated three-gene cassettes named RPLK and RPCC, comprising of an antibiotic resistance marker for positive selection, the phenotypic selection marker lacZ or mCherry, and the counterselection gene rpsL. These cassettes can be transformed with high efficiency across the Neisseria genus while significantly reducing the number of false positives compared with similar approaches. We exemplified the versatility and application of these systems by obtaining unmarked luminescent strains (knock-in) or mutants (knock-out) in different pathogenic and commensal species across the Neisseria genus in addition to the cumulative deletion of six loci in a single strain of Neisseria elongata.


Assuntos
Neisseria , Resistência Microbiana a Medicamentos , Neisseria/genética
17.
Front Cell Infect Microbiol ; 12: 862935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531336

RESUMO

Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.


Assuntos
Infecções Meningocócicas , Neisseria meningitidis , Interações Hospedeiro-Patógeno , Humanos , Estilo de Vida , Neisseria/genética , Neisseria meningitidis/genética
18.
PLoS Pathog ; 18(5): e1010497, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580146

RESUMO

The mechanisms used by human adapted commensal Neisseria to shape and maintain a niche in their host are poorly defined. These organisms are common members of the mucosal microbiota and share many putative host interaction factors with Neisseria meningitidis and Neisseria gonorrhoeae. Evaluating the role of these shared factors during host carriage may provide insight into bacterial mechanisms driving both commensalism and asymptomatic infection across the genus. We identified host interaction factors required for niche development and maintenance through in vivo screening of a transposon mutant library of Neisseria musculi, a commensal of wild-caught mice which persistently and asymptomatically colonizes the oral cavity and gut of CAST/EiJ and A/J mice. Approximately 500 candidate genes involved in long-term host interaction were identified. These included homologs of putative N. meningitidis and N. gonorrhoeae virulence factors which have been shown to modulate host interactions in vitro. Importantly, many candidate genes have no assigned function, illustrating how much remains to be learned about Neisseria persistence. Many genes of unknown function are conserved in human adapted Neisseria species; they are likely to provide a gateway for understanding the mechanisms allowing pathogenic and commensal Neisseria to establish and maintain a niche in their natural hosts. Validation of a subset of candidate genes confirmed a role for a polysaccharide capsule in N. musculi persistence but not colonization. Our findings highlight the potential utility of the Neisseria musculi-mouse model as a tool for studying the pathogenic Neisseria; our work represents a first step towards the identification of novel host interaction factors conserved across the genus.


Assuntos
Elementos de DNA Transponíveis , Interações entre Hospedeiro e Microrganismos , Neisseria , Animais , Portador Sadio/microbiologia , Portador Sadio/fisiopatologia , Elementos de DNA Transponíveis/genética , Biblioteca Gênica , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Camundongos , Microbiota/genética , Mucosa/microbiologia , Neisseria/genética , Neisseria/patogenicidade , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/patogenicidade , Neisseria meningitidis/genética , Neisseria meningitidis/patogenicidade , Simbiose/genética , Simbiose/fisiologia , Fatores de Virulência/genética
19.
mSystems ; 7(3): e0008322, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35418239

RESUMO

The genus Neisseria includes two pathogenic species, N. gonorrhoeae and N. meningitidis, and numerous commensal species. Neisseria species frequently exchange DNA with one another, primarily via transformation and homologous recombination and via multiple types of mobile genetic elements (MGEs). Few Neisseria bacteriophages (phages) have been identified, and their impact on bacterial physiology is poorly understood. Furthermore, little is known about the range of species that Neisseria phages can infect. In this study, we used three virus prediction tools to scan 248 genomes of 21 different Neisseria species and identified 1,302 unique predicted prophages. Using comparative genomics, we found that many predictions are dissimilar from prophages and other MGEs previously described to infect Neisseria species. We also identified similar predicted prophages in genomes of different Neisseria species. Additionally, we examined CRISPR-Cas targeting of each Neisseria genome and predicted prophage. While CRISPR targeting of chromosomal DNA appears to be common among several Neisseria species, we found that 20% of the prophages we predicted are targeted significantly more than the rest of the bacterial genome in which they were identified (i.e., backbone). Furthermore, many predicted prophages are targeted by CRISPR spacers encoded by other species. We then used these results to infer additional host species of known Neisseria prophages and predictions that are highly targeted relative to the backbone. Together, our results suggest that we have identified novel Neisseria prophages, several of which may infect multiple Neisseria species. These findings have important implications for understanding horizontal gene transfer between members of this genus. IMPORTANCE Drug-resistant Neisseria gonorrhoeae is a major threat to human health. Commensal Neisseria species are thought to serve as reservoirs of antibiotic resistance and virulence genes for the pathogenic species N. gonorrhoeae and N. meningitidis. Therefore, it is important to understand both the diversity of mobile genetic elements (MGEs) that can mediate horizontal gene transfer within this genus and the breadth of species these MGEs can infect. In particular, few bacteriophages (phages) are known to infect Neisseria species. In this study, we identified a large number of candidate phages integrated in the genomes of commensal and pathogenic Neisseria species, many of which appear to be novel phages. Importantly, we discovered extensive interspecies targeting of predicted phages by Neisseria CRISPR-Cas systems, which may reflect their movement between different species. Uncovering the diversity and host range of phages is essential for understanding how they influence the evolution of their microbial hosts.


Assuntos
Bacteriófagos , Neisseria meningitidis , Humanos , Prófagos/genética , Neisseria/genética , Especificidade de Hospedeiro/genética , Bacteriófagos/genética , Genômica , Neisseria gonorrhoeae
20.
PLoS One ; 17(1): e0262370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025928

RESUMO

Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 µg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera.


Assuntos
Farmacorresistência Bacteriana/genética , Macrolídeos/farmacologia , Neisseria/genética , Antibacterianos/farmacologia , Azitromicina/farmacologia , Testes de Sensibilidade Microbiana , Microbiota/genética , Inibidores da Síntese de Proteínas , RNA Ribossômico 23S/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/genética , Ribossomos/genética , Deleção de Sequência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...